TOWN OF NEWBURG
 PLANNING BOARD TECHNICAL REVIEW COMMENTS

PROJECT NAME:
 PROJECT NO.:
 PROJECT LOCATION:
 REVIEW DATE:
 MEETING DATE:
 PROJECT REPRESENTATIVE:

DRURY HEIGHTS
1994-41
SECTION 89, BLOCK 1, LOT 4.4 \& 6-Multiple filed lots
11 APRIL 2024
18 APRIL 2024
BROOKER ENGINEERING/BRIAN BROOKER

1. The applicants have prepared a updated Traffic Study for the subject project. The updated Traffic Study is based on certain improvements performed by NYSDOT, creating the new intersection of 747 /Route 17 K , a fully signalized intersection. The former Drury Lane intersection now services only traffic from the subject project and several pre-existing houses along what was Drury Lane, now a no-outlet roadway.
2. I have provided a copy of the original Approval Resolution. Specific Condition \#4 on page 6 states "the intersection of Route 17 K and Rock Cut Road has been identified as a constrained intersection requiring improvements. The developer has agreed to make a fair share contribution (by agreement with the Town Board) for the implementation of the west bound right turn lane. In addition, as announced within the Amended SEQRA Findings Statement, the developer will be responsible for widening Route 17 K for a center turn lane at Drury Lane which should be completed by, or under construction by approximately 50% occupancy of the project site". The applicants have identified that approximately 35 Certificates of Occupancies have been issued for total 100 houses proposed on the Drury Heights subdivision. The applicants have identified a request to modify Specific Condition \#4.
3. The project is subject to a court stipulation regarding litigation during the approval process. A copy of the stipulation is attached for the Planning Boards use.

Respectfully submitted,
MHE Engineering, D.P.C.

Patrick J. Hines

Principal
PJH/kbw

NEW YORK OFFICE

33 Airport Center Drive, Suite 202, New Windsor, NY 12553
845-567-3100 | F: 845-567-3232 | mheny@mhepc.com

April 2, 2024

Town of Newburgh
Planning Board
21 Hudson Valley Professional Plaza
Newburgh, NY 12250
Attn: John Ewasutyn, Chairman

RE: Drury Heights Subdivision
Route 17K Traffic Study

Dear Mr. Ewasutyn,

In accordance with the approval of the Drury Heights project the intersection of Route 17K and South Drury Lane was to be examined to determine the need for a left turn lane at South Drury Lane. At the time of the original subdivision application and approval, the Route 747 connection to the international airport was not constructed. Since then, the Route 747 has been constructed and South Drury Lane has been turned into a cul-de-sac. We have retained Harry Baker Associates to prepare a traffic analysis with the understanding that somewhere around the $50^{\text {th }}$ home the traffic would be re-evaluated to determine if any Rt 17K intersection improvements would be necessary. The study was completed when there was approximately 25 homes occupied and currently approximately 35 homes are occupied. The report concludes that intersection improvements are not necessary.

Enclosed please find 10 copies of the report dated May 15, 2023, from Harry Baker Traffic Consultant. A separate copy of the report was mailed to Pat Hines under separate cover. We would like to be placed on the April 18 agenda for review and referral to Creighton Manning the town's traffic consultant.

Very Truly Yours,

Brian Brooker, Member

Starlight Holdings, LLC

DRURY HEIGHTS SUBDIVISION 100 HOME DEVELOPMENT ON WILDWOOD DRIVE TRAFFIC IMPACT STUDY NEWBURGH, NY

```
May 15, 2023
```

Prepared By:
Harry Baker \& Associates
190 Old Colony Road
Hyannis, Ma 02601

TABLE OF CONTENTS

Page
INTRODUCTION 1
EXISTING ROADWAY CONDITIONS 1
EXISTING TRAFFIC CONDITIONS 1
Manual Traffic Counts 1
Capacity Analysis - Existing Conditions 2
2026 NO-BUILD CONDITIONS 3
2026 BUILD CONDITIONS 3
CONCLUSIONS 4
APPENDICES
A. TRAFFIC VOLUME FIGURES
B. CAPACITY ANALYSIS SUMMARIESC. TRAFFIC COUNTS

LIST OF TABLES

1. LEVEL OF SREVICE CRITERIA FOR UNSIGNALIZED INTERSECTIONS
2. CAPACITY ANALYSIS SUMMARY -EXISTING CONDITIONS
3. CAPACITY ANALYSIS SUMMARY - 2026 NO-BUILD CONDITIONS
4. TRIP GENERATION CALCULATIONS
5. CAPACITY ANALYSIS SUMMARY - 2026 BUILD CONDITIONS

LIST OF FIGURES

1. PROJECT LOCATION
2. EXISTING 7:15 AM TO 8:15 AM PEAK HOUR TRAFFIC
3. EXISTING 4:30 PM TO 5:30 PM PEAK HOUR TRAFFIC
4. 2026 NO-BUILD 7:15 AM TO 8:15 AM PEAK HOUR TRAFFIC
5. 2026 NO-BUILD 4:30 PM TO 5:30 PM PEAK HOUR TRAFFIC
6. TRIP DISTRIBUTION
7. 2026 BUILD 7:15 AM TO 8:15 AM PEAK HOUR TRAFFIC
8. 2026 BUILD 4:30 PM TO 5:30 PM PEAK HOUR TRAFFIC

INTRODUCTION

A single-family development comprised of 100 homes is proposed to be constructed on Wildwood Drive with access to South Drury Road. A portion of South Drury Drive is in the Town of Newburgh and a portion is on the Town of Montgomery, NY. Drury Road is maintained by the Town of Newburgh. Twenty-five homes have already been constructed and are occupied. The proposed street will have one travel lane in each direction and be 30 feet wide. The right-of-way is 50 feet wide. The plan used for this study was prepared by Brooker Engineering, PLLC dated 12/6/2021. Figure 1 shows the location of the project.

The purpose of the traffic study is to determine the potential impact to the local residents, including in the existing development at the intersection of Route 17K/North Drury Road/South Drury Road.

EXISTING ROADWAY CONDITIONS

Access to the proposed development will be via Wildwood Drive, which connects to South Drury Road. Wildwood Drive is under the authority of the Town of Newburgh. Wildwood Drive is a local street with one travel lane in each direction.

South Drury Road is a local road that dead ends currently. South Drury Road intersects with Route 17K which is maintained by NYSDOT. Development along this section of South Drury Road has single family homes.

EXISTING TRAFFIC CONDITIONS

Manual Traffic Counts

To accurately assess the impacts of the proposed project, manual turning movement counts were taken during a typical weekday AM, and PM peak hours. For the AM peak period, traffic counts were taken between 7:00 AM and 9:00 AM. For the PM peak period, traffic counts were taken between 4:00 PM and 6:00 PM. The manual counts were conducted on Thursday, March 2, 2023, at the following intersection.

- Route 17K/North Drury Road/South Drury Road - unsignalized

This intersection was chosen because traffic entering and exiting the proposed development will use this intersection. The traffic counts were conducted in 15-minute intervals. The counts were classified by cars, trucks, and buses which include school buses.

The weighted peak hour traffic volumes were calculated by adding the rolling hourly counts for this intersection together and determining which hour had the highest traffic volume. The traffic volumes are shown in Figures 2 and 3 show the existing traffic volumes for the peak hours of 7:15-8:15 AM and 4:30-5:30 PM.

Legend
P Dunkin'
P East Coldenham Elementary School

- Feature 1

P Johnny's Pizzeria \& Restaurant
P NY-17K \& S Drury Ln \square

PROJECT LOCATION
FIGURE 1

Google Earth

Westchester Modular Homes construction Corp

a 28
$x+3$

t

C.

:
元 ©

Capacity Analysis - Existing Conditions
The Synchro 11 software (standard Highway Capacity Manual) was used to calculate the Level of Service for each intersection. The traffic analysis is performed by calculating the capacity of the facility (e.g., intersection approach roadway) to process traffic. In general, the capacity of a facility is defined as the maximum number of vehicles or pedestrians that can reasonably be expected to traverse a point or section of roadway during a given time period under prevailing roadway, traffic, and control conditions. Therefore, capacity analyses are a set of procedures used to estimate the traffic carrying capabilities of facilities over a range of defined operational conditions. They provide tools for the analysis and improvement of existing facilities and for the planning and design of future facilities.

Unsignalized Intersections

LOS for a two-way stop-controlled (TWSC) and all-way stop-controlled (AWSC) intersections is determined by the computed or measured control delay. For motor vehicles, LOS is determined for each minor-street movement (or shared movement) as well as major-street left turns at TWSC intersections and for all movements at AWSC intersections. LOS is not defined for the intersection as a whole for TWSC and AWSC intersections.

The LOS criteria for both TWSC and AWSC unsignalized intersections are summarized in Table 1.

	Level of Service (LOS)	
Control Delay Per Vehicle	v/c ratio ≤ 1.0	$\mathrm{~V} / \mathrm{c}$ ratio ≥ 1.0
≤ 10.0 Seconds	A	F
>10.0 and 15.0 seconds	B	F
>15.0 and 25.0 seconds	C	F
>25.0 and 35.0 seconds	D	F
>35.0 and 50.0 seconds	F	F
>50.0 seconds	F	F
Source: Transportation Research Board 2016 Highway Capacity Manual Note: (1) For TWSC intersections, the LOS criteria apply to each lane on a given approach and to each approach on the minor street (for TWSC intersections.) LOS is not calculated for major-street approaches or for the intersection as a whole.		

Note that the LOS criteria for unsignalized intersections are somewhat different from the criteria used in signalized intersections. At TWSC intersections, drivers on the stopcontrolled approaches are required to select gaps in the major-street flow in order to execute crossing or turning maneuvers. In the presence of a queue, each driver on the controlled approach must also use some time to move into the front-of-queue position
and prepare to evaluate gaps in the major street flow. AWSC intersections require drivers on all approaches to stop before proceeding into the intersection.

Table 2 summarizes the results of the capacity analysis. The results of the Synchro analysis show that the South Drury Road southbound approach is operating at LOS "D" in the AM peak hour. The North and South Drury Road approaches are operating at LOS "D" in the PM peak hour. The remainder of the approaches are operating at LOS "C" or better.

2026 NO-BUILD CONDITIONS

The no-build conditions represent the traffic volumes that would be on the street network without the completion of the development. A background growth rate of 1.01\% per year compounded was used to increase the base traffic volumes from 2023 to 2026. This is the background growth rate for Orange County published by NYMTC.

Figures 4 and 5 show the 2026 No-Build traffic volumes for the AM and PM peak hours, respectively. The results of the capacity analyses are shown in Table 3.

The results of the capacity analysis are as follows:
The LOS did not change for any of the movements.

2026 BUILD CONDITIONS

A single-family development comprised of 100 homes is proposed to be constructed on Wildwood Drive, Rustic Drive, and Whispering Hill with access to South Drury Road in the Town of Montgomery and the Town of Newburgh, NY. The proposed street will have one travel lane in each direction and be 30 feet wide. The right-of-way is 50 feet wide. Twenty-five homes have already been built and are occupied. Table 4 shows the calculation of the vehicles that will be generated by this project for Land Use 210 - Single Family Detached Housing.

To determine the number of vehicular trips generated by this proposed development, the Institute of Transportation Engineers "Trip Generation Manual" 11th Edition, Land Use Code 210 (Single Family Detached Housing) was used. Table 4 shows the calculations of the peak hour trips for the proposed balance of the 75-house development.

TABLE 2

TABLE 2 CAPACITY ANALYSIS SUMMARY EXISTING CONDITIONS UNSIGNALIZED INTERSECTIONS						
	Weekday					
	AM PEAK HOUR V/C LOS Ratio Delay			$\begin{aligned} & \text { PM PEAK HOUR } \\ & \text { V/C } \end{aligned}$		
Route 17K/Drury Road						
Route 17K						
Eastbound LTR	A	0.05	8.6	A	0.04	9.0
Westbound LTR	A	0.01	8.2	A	0.02	8.7
Drury Road						
Northbound LTR	C	0.19	19.4	D	0.30	26.0
Southbound LTR	D	0.29	26.7	D	0.20	31.2

\left.	TABLE 3					
CAPACITY ANALYSIS SUMMARY						
2026 NO-BUILD CONDITIONS						
UNSIGNALIZED INTERSECTIONS						$\right]$

TABLE 4 - Calculation of Weekday Peak Hour Trips	
Single Family Detached Housing -75 houses	
Morning Peak Hour	Afternoon Peak Hour
Total Trips $=1.00 \times 75$ houses $=75$ trips	Total Trips $=1.07 \times 75$ houses $=80$ trips
Trips Entering $=0.25 \times 16$ trips $=19$ trips	Trips Entering $=0.63 \times 80$ trips $=50$ trips
Trips Exiting $=0.75 \times 16$ trips $=56$ trips	Trips Exiting $=0.37 \times 80$ trips $=30$ trips

Using the existing traffic counts for the traffic entering and exiting South Drury Road, we calculated the number of proposed vehicle trips that would enter and exit South Drury Road. Figure 6 shows the trip distribution of these trips. Figures 7 and 8 show the 2026 Build traffic volumes. Table 5 compares the 2026 No-Build and 2026 Build LOS results. The results of the Synchro analysis show that in the AM peak hour, the South Drury Road northbound approach is projected to change from LOS "C" to "D." In the PM peak hour, the northbound and southbound Drury Road approaches are projected to change from LOS "D" to "E." It should be pointed out that construction of new homes is on-going and as a result, workers and support staff are using the intersection to access Wildwood Drive to build the homes. When these workers have completed the construction and are replaced by the homeowners, we would expect a reduction in vehicle trips thereby improving the LOS.

CONCLUSIONS

1. The proposed single-family residential development will generate a total of 75 vehicle trips in the AM peak hour with 19 vehicles entering and 56 vehicles exiting. In the PM peak hour, a total of 80 vehicle trips will be generated with 50 vehicles entering and 30 vehicles exiting.
2. The results of the Synchro analysis show that the South Drury Road is projected to operate at LOS " E " in 2026. The volume-to-capacity ratio is 0.53 for the South Drury Road northbound approach.
3. The construction of an exclusive left-turn lane on Route 17 K at the South Drury Road intersection is not warranted.

TABLE 5 CAPACITY ANALYSIS SUMMARY 2026 NO-BUILD VS. 2026 BUILD CONDITIONS UNSIGNALIZED INTERSECTIONS												
	AM PEAK HOUR V/C LOS Ratio Delay			PM PEAK HOUR V/C		$\begin{aligned} & \text { IOUR } \\ & \text { Delay } \end{aligned}$	AM	EAK V/C Ratio	2026 DeUR Delay	PM PEAK HOUR V/C		
Route 17K/Drury Road												
Route 17K												
Eastbound LTR	A	0.05	8.7	A	0.04	9.0	A	0.05	8.7	A	0.04	9.0
Westbound LTR	A	0.01	8.2	A	0.02	8.8	A	0.02	8.3	A	0.05	9.0
Drury Road												
Northbound LTR	C	0.21	20.4	D	0.32	28.1	D	0.45	29.0	E	0.53	41.9
Southbound LTR	D	0.31	28.3	D	0.22	34.0	D	0.35	32.8	E	0.27	42.7

APPENDIX A TRAFFIC VOLUME FIGURES

EXISTING AM PEAK HOUR TRAFFIC 7:15 AM - 8:15 AM
FIGURE ?

EXISTING PM PEAK HZUR TRAFFIC 4:30 PM - 5:30 PM FIGURE 3

2026 ND-BUILD PEAK HDUR TRAFFIC 7:15 AM - 8:15 AM
FIGURE 4

2026 ND-BUILD PM PEAK HDUR TRAFFIC 4:30 PM - 5:30 PM FIGURE 5

TRIP DISTIRBUTIDN
FIGURE 6

2026 BUILD PEAK HUUR TRAFFIC 7:15 AM - 8:15 AM
FIGURE 7

2026 BUILD PM PEAK HDUR TRAFFIC 4:30 PM - 5:30 PM
FIGURE 8

APPENDIX B
 CAPACITY ANALYSIS SUMMARIES

CAPACITY ANALYSIS SUMMARY EXISTING CONDITIONS

CAPACITY ANALYSIS SUMMARY 2026 NO-BUILD CONDITIONS

Intersection												
Int Delay, s/veh	3.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\ddagger			\&			\$	
Traffic Vol, veh/h	45	400	6	12	428	53	21	4	32	43	3	19
Future Vol, veh/h	45	400	6	12	428	53	21	4	32	43	3	19
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, \%	7	8	33	0	8	0	5	0	32	0	0	11
Mvmt Flow	48	430	6	13	460	57	23	4	34	46	3	20

CAPACITY ANALYSIS SUMMARY 2026 BUILD CONDITIONS

APPENDIX C TRAFFIC COUNTS

Total:	58	15	117	0	35	1588	145	0	141	20	93	0	143	1815	58	0	4228
7:15-8:15	SBRT	SBST	SBLT		EBRT	EBST	EBLT		NBRT	NBST	NBLT		WBRT	WBST	WBLT		Totals
Cars	16	3	42		4	356	41		21	4	19		51	380	12		949
Buses	1	0	0		1	6	1		2	0	0		0	9	0		20
Trucks	1	0	0		1	26	2		8	0	1		0	26	0		65
Totals	18	3	42		6	388	44		31	4	20		51	415	12		1034
\% HV	11\%	0\%	0\%		33\%	8\%	7\%		32\%	0\%	5\%		0\%	8\%	0\%		8\%
PHF	0.93	0.93	0.93		0.93	0.93	0.93		0.93	0.93	0.93		0.93	0.93	0.93		0.93
4:30-5:30	SBRT	SBST	SBLT		EBRT	EBST	EBLT		NBRT	NBST	NBLT		WERT	WBST	WBLT		Totals
Cars	11	3	17		11	447	31		36	4	22		27	542	13		1164
Buses	0	0	0		0	14	0		0	0	0		0	3	2		19
Trucks	0	0	0		0	7	0		2	1	0		0	20	0		30
Totals	11	3	17		11	468	31		38	5	22		27	565	15		1213
\% HV	0\%	0\%	0\%		0\%	4\%	0\%		5\%	20\%	0\%		0\%	4\%	13\%		4\%
PHF	0.91	0.91	0.91		0.91	0.91	0.91		0.91	0.91	0.91		0.91	0.91	0.91		0.91

